1. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307(5708):373-5. [
DOI:10.1126/science.1104342]
2. Kaplan NM. Hypertension and diabetes.Journal of Human Hypertension. 2002; 16 Suppl 1: 2002:16 Suppl:S56-60.doi: 10.1038/sj.jhh.1001344. [
DOI:10.1038/sj.jhh.1001344]
3. Schmoll, D, Walker, K.S, Alessi, D.R, Grempler, R, Burchell, A, Guo, S, et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Bα and the Forkhead transcription factor FKHR: evidence for insulin response unit-dependent and-independent effects of insulin on promoter activity. Journal of Biological Chemistry.2000;275(46):36324-33. [
DOI:10.1074/jbc.M003616200]
4. Sutherland C, O'Brien RM, Granner DK, Marshall CJ. New connections in the regulation of PEPCK gene expression by insulin. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 1996;351(1336):191-9. [
DOI:10.1098/rstb.1996.0016]
5. Vidal-Puig A, O'Rahilly S. Controlling the glucose factory. Nature. 2001;413(6852):125-6. [
DOI:10.1038/35093198]
6. Yang H, Li Q, Lee JH, Shu Y. Reduction in Tcf7l2 expression decreases diabetic susceptibility in mice. International journal of biological sciences. 2012;8(6):791. [
DOI:10.7150/ijbs.4568]
7. Norton L, Fourcaudot M, Abdul-Ghani MA, Winnier D, Mehta FF, Jenkinson CP, Defronzo RA. Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia. 2011;54:3132-42. [
DOI:10.1007/s00125-011-2289-z]
8. Oh KJ, Park J, Kim SS, OH H, Choi CS, Koo SH. TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. Plos Genetics. 2012; 8(9):e1002986. [
DOI:10.1371/journal.pgen.1002986]
9. Eizadi M, Ravasi AA, Soori R, Baesi K, Choubineh S. Effect of three months aerobic training on TCF7L2 expression in pancreatic tissue in type 2 diabetes rats induced by streptozotocin-nicotinamide. KAUMS Journal (FEYZ). 2017;21(1):1-8.(in Persian) [
DOI:10.17795/ajmb-34014]
10. Eizadi M, Soory R, Ravasi A, Baesy K, Choobineh S. Relationship between TCF7L2 relative expression in pancreas tissue with changes in insulin by high intensity interval training (HIIT) in type 2 diabetes rats. Journal of Shahid Sadoughi University Science. 2017 ;24(12):981-93.(in Persian)
11. Dela F, Stallknecht B. Effect of physical training on insulin secretion and action in skeletal muscle and adipose tissue of first-degree relatives of type 2 diabetic patients. American Journal of Physiology-Endocrinology and Metabolism. 2010;299(1):E80-91. [
DOI:10.1152/ajpendo.00765.2009]
12. Shaban N, Kenno KA, Milne KJ. The effects of a 2 week modified high intensity interval training program on the homeostatic model of insulin resistance (HOMA-IR) in adults with type 2 diabetes. The Journal of sports medicine and physical fitness. 2014;54(2):203-9.
13. Karstoft K, Winding K, Knudsen SH, James NG, Scheel MM, Olesen J, et al. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2014;57:2081-93. [
DOI:10.1007/s00125-014-3334-5]
14. Slentz CA, Tanner CJ, Bateman LA, Durheim MT, Huffman KM, Houmard JA, et al. Effects of exercise training intensity on pancreatic β-cell function. Diabetes care. 2009;32(10):1807-11. [
DOI:10.2337/dc09-0032]
15. Eizadi M, Mirakhori Z, Behrestaq SF. Effect of 8-Week Interval Training on Protein Tyrosine Phosphatase 1B Expression in Gastrocnemius Muscle and Insulin Resistance in Rats with Type 2 Diabetes. Avicenna Journal of Medical Biochemistry. 2019;7(2):51-6. [
DOI:10.34172/ajmb.2019.09]
16. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science. 2019;1(1):24-32. [
DOI:10.1016/j.smhs.2019.08.003]
17. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of applied physiology. 2011;111(6):1554-60. [
DOI:10.1152/japplphysiol.00921.2011]
18. Rashidi M, Eizadi M. The effect of an interval exercise period (HIIT) on MTNR1B gene expression, insulin and glucose levels in type 2 diabetic rats. Journal of Knowledge & Health .2019;14(1):28-35.(in Persian)
19. DiPietro L, Dziura J, Yeckel CW, Neufer PD. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. Journal of applied physiology. 2006;100(1):142-9. [
DOI:10.1152/japplphysiol.00474.2005]
20. Kang J, Robertson RJ, Hagberg JM, Kelley DE, Goss FL, Dasilva SG, et al. Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes care. 1996;19(4):341-9. [
DOI:10.2337/diacare.19.4.341]
21. Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS, et al. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. Journal of Biological Chemistry. 2002;277(26):23301-7. [
DOI:10.1074/jbc.M200964200]
22. Hanson RW, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annual review of biochemistry. 1997;66(1):581-611. [
DOI:10.1146/annurev.biochem.66.1.581]
23. Steckling FM, Farinha JB, Santos DL, Bresciani G, Mortari JA, Stefanello ST, et al. High intensity interval training reduces the levels of serum inflammatory cytokine on women with metabolic syndrome. Experimental and clinical endocrinology & diabetes. 2016;124(10):597-601. [
DOI:10.1055/s-0042-111044]